Inyectables

Bóticas de Ángel

US$ 40 - (32 )
IVA inc.
¿Quieres hablar gratis con un asesor sobre este curso?

Información importante

  • Taller
  • A distancia
  • Duración:
    3 Días
Descripción

Información importante

Temario

OLAP es el acrónimo en inglés de procesamiento analítico en línea (On-Line Analytical Processing). Es una solución utilizada en el campo de la llamada Inteligencia empresarial (o Business Intelligence) cuyo objetivo es agilizar la consulta de grandes cantidades de datos. Para ello utiliza estructuras multidimensionales (o Cubos OLAP) que contienen datos resumidos de grandes Bases de datos o Sistemas Transaccionales (OLTP). Se usa en informes de negocios de ventas, marketing, informes de dirección, minería de datos y áreas similares.

La razón de usar OLAP para las consultas es la velocidad de respuesta. Una base de datos relacional almacena entidades en tablas discretas si han sido normalizadas. Esta estructura es buena en un sistema OLTP pero para las complejas consultas multitabla es relativamente lenta. Un modelo mejor para búsquedas (aunque peor desde el punto de vista operativo) es una base de datos multidimensional.

La principal característica que potencia a OLAP, es que es lo más rápido a la hora de ejecutar sentencias SQL de tipo SELECT, en contraposición con OLTP que es la mejor opción para operaciones de tipo INSERT, UPDATE Y DELETE.

Comparación

Cada sistema OLAP tiene ciertos beneficios (aunque existe desacuerdo acerca de las características específicas de los beneficios entre los proveedores).

Algunas implementaciones MOLAP son propensas a la "explosión" de la base de datos; este fenómeno provoca la necesidad de grandes cantidades de espacio de almacenamiento para el uso de una base de datos MOLAP cuando se dan ciertas condiciones: elevado número de dimensiones, resultados precalculados y escasos datos multidimensionales. Las técnicas habituales de atenuación de la explosión de la base de datos no son todo lo eficientes que sería deseable.

Por lo general MOLAP ofrece mejor rendimiento debido a la especializada indexación y a las optimizaciones de almacenamiento. MOLAP también necesita menos espacio de almacenamiento en comparación con los especializados ROLAP porque su almacenamiento especializado normalmente incluye técnicas de compresión.

ROLAP es generalmente más escalable. Sin embargo, el gran volumen de preprocesamiento es difícil de implementar eficientemente por lo que con frecuencia se omite; por tanto, el rendimiento de una consulta ROLAP puede verse afectado.

Desde la aparición de ROLAP van apareciendo nuevas versiones de bases de datos preparadas para realizar cálculos, las funciones especializadas que se pueden utilizar tienen más limitaciones.

HOLAP (OLAP Híbrido) engloba un conjunto de técnicas que tratan de combinar MOLAP y ROLAP de la mejor forma posible. Generalmente puede pre-procesar rápidamente, escala bien, y proporciona una buena función de apoyo.