CUM LAUDE Premium 30% de Descuento. ¡Quédate en casa! ¡30% de ahorro!

Introducción a Machine Learning con Pandas y TensorFlow

4.5
12 opiniones
  • Quería iniciarme en Machine Learning y opté por este curso. Los resultados han sido muy favorables.Cumple con los objetivos especificados en el temario y su plataforma online es fácil de usar.
    |
  • El curso cuenta con los materiales necesarios para poder iniciarse en Machine Learning. Las clases están bien explicadas, las sesiones son claras, tiene varias prácticas y en general me sido de utilidad.
    |
  • Me ha ayudado a comprender mejor los conceptos de Machine Learning y tener una visión más precisa de sus posibilidades. Es un curso bastante técnico, solo para programadores
    |

Online

Precio Emagister

126 € 180 € IVA inc.

Descripción

  • Tipología

    Curso intensivo

  • Nivel

    Nivel intermedio

  • Metodología

    Online

  • Horas lectivas

    25h

  • Duración

    3 Meses

  • Inicio

    Fechas a elegir

  • Campus online

  • Envío de materiales de aprendizaje

  • Servicio de consultas

  • Tutor personal

Descripción

¿Te fascina el mundo de los lenguajes de programación y quieres formarte para dedicarte a ello? ¿Ya lo haces pero quieres ampliar tu currículum, así como tus conocimientos y aptitudes al respecto? Si tu respuesta ha sido afirmativa, este curso es para ti.

Se trata del curso en “Introducción a Machine Learning con Pandas y TensorFlow”, ofrecido por el centro Culture Lab y ubicado dentro del catálogo formativo de Emagister. Con él, te convertirás en todo un profesional.

Las ventajas que este curso te ofrece son muchas, empezando por su modalidad online, que te permitirá adaptar los estudios a tu día a día y combinarlo con cualquier otra actividad. ¡Márcate tú los horarios y el ritmo de estudio!

El temario del curso queda dividido en distintos módulos, cada cual a su vez se subdivide en diferentes apartados a fin de que su comprensión sea adecuada y tu aprendizaje óptimo. Trabajarás las herramientas principales, modelos, entorno de desarrollo, software, requisitos...entre muchos otros conceptos.

¡Aprovecha ya esta oportunidad y conviértete en un gran profesional!

Si necesitas más información puedes meterte en emagister.com y pedirla sin compromiso, un comercial te atenderá. También contestará cualquier duda que te pueda surgir.

Información importante

Precio a usuarios Emagister: 30% de descuento a estudiantes y desempleados

Bonificable: Curso bonificable para empresas
Si eres trabajador en activo, este curso te puede salir gratis a través de tu empresa.

Instalaciones y fechas

Ubicación

Inicio

Online

Inicio

Fechas a elegirMatrícula abierta

A tener en cuenta

- Conocer los alcances de Machine Learning y qué relación tiene con Inteligencia Artificial y Deep Learning. - Dominar las herramientas específicas para trabajar con Machine Learning. - Conocer las estructuras de datos. - Gestionar diferentes sets de datos - Realizar operaciones con grandes volúmenes de datos. - Conocer qué es TensorFlow y cómo utilizarlo - Trabajar con ejemplos prácticos que ayuden a fijar los contenidos.

El presente curso está principalmente orientado para analistas, programadores, y personas con experiencia previa en Python que quieran acercarse a las metodologías de Machine Learning

Para realizar este curso es necesario disponer de experiencia previa en programación Python.

Una vez hayas finalizado el curso satisfactoriamente, se te hará entrega de un Certificado del Curso emitido por Culture Lab TS S.L. De manera opcional también disponemos de Bolsa de empleo para aquellas personas que lo soliciten.

El curso responde a la creciente demanda de especialistas en esta novedosa tecnología desde un punto de vista versátil y actualizado y con un precio claramente inferior al de sus competencias.

En el momento que solicites información de este curso, te enviaremos un correo explicativo con todas las características y nos pondremos en contacto por teléfono para aclarar todas tus dudas y explicarte el proceso de inscripción.

El precio es de 180€ con IVA incluido.

Tanto para desempleados como para estudiantes ambos tendréis un 15% de descuento. Indicar este dato en el vuestra solicitud para que os remitamos un impreso con descuento.

Si. El curso es bonificable para trabajadores y empresas a través de la FUNDAE. Nuestro LMS cumple con todos los criterios exigidos por la FUNDAE para la correcta bonificación de nuestras formaciones.

Puedes solicitar la devolución íntegra del importe de tu curso en los 15 primeros días desde su adquisición por cualquier causa. Lo que más nos importa es que puedas aprovechar el curso y que te sirva para culminar tus proyectos profesionales.

Preguntas & Respuestas

Plantea tus dudas y otros usuarios podrán responderte

¿Quién quieres que te responda?

Sólo publicaremos tu nombre y pregunta

Opiniones

4.5
excelente
  • Quería iniciarme en Machine Learning y opté por este curso. Los resultados han sido muy favorables.Cumple con los objetivos especificados en el temario y su plataforma online es fácil de usar.
    |
  • El curso cuenta con los materiales necesarios para poder iniciarse en Machine Learning. Las clases están bien explicadas, las sesiones son claras, tiene varias prácticas y en general me sido de utilidad.
    |
  • Me ha ayudado a comprender mejor los conceptos de Machine Learning y tener una visión más precisa de sus posibilidades. Es un curso bastante técnico, solo para programadores
    |
100%
4.5
fantástico

Valoración del curso

Lo recomiendan

Valoración del Centro

Sofía Muriel Asenjo

5.0
04/02/2020
Sobre el curso: Quería iniciarme en Machine Learning y opté por este curso. Los resultados han sido muy favorables.Cumple con los objetivos especificados en el temario y su plataforma online es fácil de usar.
¿Recomendarías este curso?:

Armando García Lasso

4.0
04/02/2020
Sobre el curso: El curso cuenta con los materiales necesarios para poder iniciarse en Machine Learning. Las clases están bien explicadas, las sesiones son claras, tiene varias prácticas y en general me sido de utilidad.
¿Recomendarías este curso?:

Juan Alba Sánchez

4.0
03/02/2020
Sobre el curso: Me ha ayudado a comprender mejor los conceptos de Machine Learning y tener una visión más precisa de sus posibilidades. Es un curso bastante técnico, solo para programadores
¿Recomendarías este curso?:

Javier Pinto Cubelos

5.0
03/02/2020
Sobre el curso: Agradeceros la formación recibida así como el buen seguimiento del curso online de Introducción a Machine Learning.
¿Recomendarías este curso?:

Orlando Salazar

4.0
02/02/2020
Sobre el curso: Es un curso útil. El profesor explica bastante bien y el temario es bastante extenso para las horas que tiene. Diría que es más que una introducción.
¿Recomendarías este curso?:
Ver todas
* Opiniones recogidas por Emagister & iAgora

Logros de este Centro

2020
Este centro lleva demostrando su calidad en Emagister
8 años con Emagister

Todos los cursos están actualizados

La valoración media es superior a 3,7

Más de 50 opiniones en los últimos 12 meses

Este centro lleva 8 años en Emagister.

Materias

  • Machine learning
    11

    11 alumnos han indicado haber adquirido esta competencia

  • Pandas
    10

    10 alumnos han indicado haber adquirido esta competencia

  • TensorFlow
    11

    11 alumnos han indicado haber adquirido esta competencia

  • Aprendizaje automático
    9

    9 alumnos han indicado haber adquirido esta competencia

  • Python
    12

    12 alumnos han indicado haber adquirido esta competencia

  • Deep learning
    7

    7 alumnos han indicado haber adquirido esta competencia

  • Inteligencia artificial
    7

    7 alumnos han indicado haber adquirido esta competencia

  • Algoritmos
    4

    4 alumnos han indicado haber adquirido esta competencia

  • Bases de datos
    6

    6 alumnos han indicado haber adquirido esta competencia

  • Programación
    1

    1 alumnos han indicado haber adquirido esta competencia

  • Actualidad
  • Concepto de Deep Learning
    8

    8 alumnos han indicado haber adquirido esta competencia

  • Modelos de Machine Learning
    10

    10 alumnos han indicado haber adquirido esta competencia

  • Entorno de desarrollo
    2

    2 alumnos han indicado haber adquirido esta competencia

  • Software
    1

    1 alumnos han indicado haber adquirido esta competencia

  • Requisitos
    1

    1 alumnos han indicado haber adquirido esta competencia

  • Hardware
    2

    2 alumnos han indicado haber adquirido esta competencia

  • Análisis de la CPU
  • Almacenamiento
    4

    4 alumnos han indicado haber adquirido esta competencia

  • Principales herramientas

Profesores

Pablo  Romero Quinteros

Pablo Romero Quinteros

Data Scientist y Especialista en Entornos Machine Learning

Temario

Tema 1º Introducción a Machine Learning

  • Lección 1: Introducción al Machine Learning
  • Lección 2: Breve historia del Machine Learning
  • Lección 3: Actualidad del Machine Learning
  • Lección 4: Concepto de Deep Learning y modelos de Machine Learning

Tema 2º Entorno de Desarrollo

  • Lección 5: Requisitos del Software en Machine Learning (Parte 1)
  • Lección 6: Requisitos del Software en Machine Learning (Parte 2)
  • Lección 7: Requisitos del Hardware para Machine Learning (Parte 1)
  • Lección 8: Requisitos del Hardware en Machine Learning (Parte 2)
  • Lección 9: Requisitos del Hardware en Machine Learning (Parte 3)
  • Lección 10: Análisis de la CPU (Parte 1)
  • Lección 11: Análisis de la CPU (Parte 2)
  • Lección 12: Análisis del almacenamiento y CPU
  • Lección 13: Principales herramientas para Machine Learning (Parte 1)
  • Lección 14: Principales herramientas para Machine Learning (Parte 2)
  • Lección 15: Descripción y características de Anaconda
  • Lección 16: Instalación de Anaconda
  • Lección 17: Gestión de entornos con Anaconda
  • Lección 18: Análisis de entornos: iPython y Spyder
  • Lección 19: Análisis de la aplicación: Jypiter (Abierta)

Tema 3º Estructuras de Datos

  • Lección 20: Conceptos básicos de la estructura de datos
  • Lección 21: Características principales de las Listas (Parte 1)
  • Lección 22: Características principales de las Listas (Parte 2)
  • Lección 23: Definición y uso de las Sublistas y Extend
  • Lección 24: Modificación y eliminación de elementos en listas
  • Lección 25: Propiedades y búsquedas en Listas
  • Lección 26: Definición y operaciones con Matrices
  • Lección 27: Uso y funciones del List Comprehensions
  • Lección 28: Demostración práctica del elemento Listas (Parte 1)
  • Lección 29: Demostración práctica del elemento Listas (Parte 2)
  • Lección 30: Introducción a elementos de diccionarios
  • Lección 31: Método get0 y agregación de elementos en diccionarios
  • Lección 32: Ordenación y búsqueda en diccionarios
  • Lección 33: Matrices con diccionarios
  • Lección 34: Demostración práctica y conclusiones con diccionarios
  • Ejercicios del Tema 3

Tema 4º Operaciones con Datos

  • Lección 35: Conceptos básicos de las operaciones e introducción a NumPy
  • Lección 36: Importación y creación de Arrays en NumPy
  • Lección 37: Agregación y modificación de elementos en NumPy
  • Lección 38: Funciones y operaciones con NumPy
  • Lección 39: Filtrado Booleano de los datos y observaciones principales en NumPy
  • Lección 40: Introducción a la biblioteca Pandas
  • Lección 41: Objeto Series y DataFrame en Pandas
  • Lección 42: Gestión y carga de los datos en Pandas
  • Lección 43: Carga de datos en HTML y Análisis y funciones de los Datasets
  • Lección 44: Análisis y ejemplos de los Datasets
  • Ejercicios del Tema 4
  • Examen 1º

Tema 5º Gestión de los Datos

  • Lección 45: Introducción y funcionalidades de la carga de Datos (Abierta)
  • Lección 46: Acceso a elementos y subconjuntos de datos
  • Lección 47: Procesos de agregación de elementos en un Dataframe
  • Lección 48: Principales funciones del objeto Dataframe
  • Lección 49: Operaciones con Dataframe y filtrado Booleano
  • Lección 50: Ejemplo práctico con el objeto Dataframe
  • Lección 51: Visualización de los datos con Matplotlib
  • Lección 52: Formato y colocación de etiquetas en los datos
  • Lección 53: Principales tipos de gráficos
  • Lección 54: Proceso de exportación de gráficos
  • Ejercicios del Tema 5

Tema 6º TensorFlow

  • Lección 55: Introducción e historia de TensorFlow
  • Lección 56: Usos y aplicaciones de TensorFlow
  • Lección 57: Usos y aplicaciones de TensorFlow (2 Parte)
  • Lección 58: Estructura de TensorFlow: Tensores, nodos y grafos
  • Lección 59: Estructura de TensorFlow: Sesiones e importación
  • Lección 60: Operaciones de cálculo simple con TensorFlow
  • Lección 61: Operaciones con grafos y neuronas
  • Lección 62: Construcción y operaciones con neuronas AND
  • Lección 63: Operaciones con neuronas y Regresión Lineal
  • Lección 64: Operaciones de Regresión Lineal (Parte 1)
  • Lección 65: Operaciones de Regresión Lineal (Parte 2)
  • Ejercicios del Tema 6º

Tema 7º Operaciones con Machine Learning

  • Lección 66: Introducción a las operaciones
  • Lección 67: Objetivo y selección del modelo (1 Parte)
  • Lección 68: Selección del modelo (2 Parte)
  • Lección 69: Uso de algoritmo y Scikit-learn
  • Lección 70: Caso práctico con Machine Learning
  • Lección 71: Preparación de los datos y análisis exploratorio
  • Lección 72: Preparación de los datos y análisis estadístico
  • Lección 73: Visualización individual de los datos
  • Lección 74: Visualización conjunta de los datos
  • Lección 75: Visualización conjunta de los datos (Parte 2)
  • Lección 76: Visualización conjunta de los datos (Parte 3)
  • Lección 77: Entrenamiento y preparación de los datos
  • Lección 78: Entrenamiento y elección del modelo
  • Lección 79: Entrenamiento y revisión del modelo
  • Lección 80: Revisión del modelo y conclusiones finales
  • Ejercicios del Tema 7
  • Examen 2º

Información adicional

Culture Lab se ha convertido en un referente de educación en el entorno de las tecnologías innovadoras, ofreciendo una garantía de calidad certificada en su amplia y variada oferta de cursos dirigidos a particulares y empresas de toda España. 

Te recordamos que todos nuestros cursos te garantizan: 

1º Convocatoria abierta 24/7: Puedes inscribirte cuando consideres, no tenemos fechas límites. Realiza el curso a tu ritmo. 

2º Prácticas y exámenes: En todos los cursos tendrás que completar una serie de ejercicios, todos con soluciones en vídeo, y en paralelo, tendrás que superar 2 exámenes tipo test para confirmar tus conocimientos. 

3º Certificado de curso: Una vez superada la formación, se te hará entrega de un Certificado del curso emitido por Culture Lab TS S.L. 

4º Bolsa activa de Empleo: De forma opcional, si buscas empleo en este sector, puedes incluirte en nuestra Bolsa de empleo y recibir ofertas relativas a tu sector. 

5º Bonificable a través de Fundae:  En caso de ser empresa o trabajador, este curso se puede bonificar y en caso de contar con los créditos necesarios puedes obtener una rebaja considerable en el precio final. Informate sin compromiso de como establecer la bonificación de tu curso.

Más información

¿Necesitas un coach de formación?

Te ayudará a comparar y elegir el mejor curso para ti, y podrás financiar tu matrícula en cómodos plazos.

900 64 94 94

Llamada gratuita. Lunes a viernes de 9h a 20h.

Introducción a Machine Learning con Pandas y TensorFlow

Precio Emagister

126 € 180 € IVA inc.